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A simplified fixed-point perturbation theory: 11. An application 
to the first few Pad6 potentials 
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Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, 
Czechoslovakia 

Received 13 June 1986, in final form 28 August 1986 

Abstract. In the radial Schrodinger equation for bound states, central potentials V ( r )  = 
VCoulomb+ Vshon.range are considered, with Vrhort.rangc replaced by its [ p  - j ,  p ]  Padi  
approximants, p > j 3 1. The earlier method is completed and a few coefficients of the 
fixed-point perturbation theory asymptotic expansions of the effective Hamiltonians are 
evaluated in REDUCE for p c 3. 

1. Introduction 

An algebraic construction of the exact effective Hamiltonians as described in I (Znojil 
1987) is an extremely suitable task for computer symbolic manipulation. Indeed, the 
underlying fixed-point perturbation theory (FPPT) is a simple idea which leads to 
complicated equations, but their final solution remains comparatively simple again. 
In the present paper, we intend to illustrate this statement by a number of examples. 

Bearing in mind the phenomenological needs, we shall consider the three- 
dimensional (radial) Schrodinger equation 

(1 . la )  

where the potential V(r) behaves like a Coulomb force at both r = 0 and r + CD. In 
the ‘realistic’ situations of this type, we may write V ( r )  as a superposition of the 
Coulombic term with a force regular at the origin and decreasing to infinity. Thus, in 
the light of the methodical considerations of I ,  we shall assume that 

( l . l b )  

p - 1  

1=0 
B( r )  = b,r’ 

C ( r ) = l +  f: c , r~>o  r30, p z l ,  c,>O. 
j = l  

The Coulomb + Pad6 force (1.1 b )  contains 2p + 1 free parameters in general. In 
atoms and molecules, they may be employed in a phenomenological description of 
the screening and polarisation effects, whereas in nuclear physics, the Pad6 component 
of V (  r )  may simulate strong interactions, etc. The flexibility and complexity of V (  r )  
(1.lb) is only limited by our choice of the integer p .  
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Methodically, the Schrodinger eigenvalue problem ( 1 . 1 )  leads to a number of open 
questions: how to compute the matrix elements in the purely variational context (cf, 
e.g., the special p = 1 example of Mitra (1978)), how to take the corrections into 
account, etc. In  the light of I, all these problems may be reduced to mere technical 
questions. Their systematic analysis is done for p s 3 here. For the higher values of 
p ,  the search for answers may become rather difficult again, but the algebraic method 
itself remains the same. 

2, we shall start from the change of variables proposed in I .  In analogy with 
the p = 2 example of I (where a = 0, b,  = 0 and cl = 0 have been chosen in addition), 
we shall show how the band matrix equivalent of ( 1 . 1 )  may be obtained for an arbitrary 
p 3 1 .  In § 3, we start from a recurrent and difference-equation re-interpretation of 
this linear algebraic set of equations AV = 0 ( $  3.1).  Then, in the standard perturbative 
spirit (cf, e.g., Kumar 1962), we describe FPPT as an algebraic power-series expansion 
of the Feshbach effective Hamiltonian (§  3.2). 

In a systematic way, the p = 2 and p = 3 examples are considered in § §  4 and 5, 
respectively. We employ REDUCE and define the first few FPFT contributions as functions 
of the corresponding 2 p  + 1 coupling constants. These results are summarised in P 6. 

In  

2. The difference Schrodinger equation 

In accord with I, we intend to represent the class of eigenvalue problems (1.1) in a 
Sturmian basis. In the first step, we have to change the variables 

E” - k 2  < 0 r = x 2 / 2 k  > 0 $ ( r )  = x ’ ” x ( x )  

1 = 2 2  L( L - L)  
(2 .1)  

a = -$ke. 

As a consequence, our new ‘canonical’ Schrodinger equation 

( ELo+.’ k 2  C ( x 2 / 2 k )  B ( x 2 / y x )  = & X ( X )  

is equivalent to ( 1 . 1 ) .  It contains the perturbed harmonic-oscillator Hamiltonian 

rather than the screened Coulombic one. 

way, we shall write 
In the second step, we shall factorise the anharmonicity in ( 2 . 2 ) .  In a non-unique 

- x 2  B ( x 2 / 2 k )  - 6 ( x )  
k2  C ( x 2 / 2 k )  - C ( x )  p ( x )  

m = l  

PI p2 

t = l  J = 1  
C ( x ,  = n ( X * S  fi,) ? ( x )  = ( X 2 S  v;) 
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where p ,  + p 2  = p and the non-negative numbers f i i  e ( -CO, 0) and  6 (-a, 0) will be 
complex in general. This enables us to rewrite our Schrodinger differential equation 
(2.2) in its final form A(P = 0, 

(2.4) 

The new wavefunctions ( ~ ( x )  = ? ' ( x ) , y ( x )  are square integrable if and only if 
their original form $ ( r )  describes a bound state (1)-we may expand them in the 
standard and  complete harmonic oscillator basis 1 n ) ,  

[ f i ( x ) ( H o -  E )  P ( x )  + & x ) ] $ ( x )  = 0. 

( P ( x ) =  1 (xlm)qm 
m=O 

~ ~ l n )  = (4n + 2 ~ + 3 ) l n )  n = 0 , 1 .  

In this representation, (2.4) acquires a new infinite-dimensional algebraic form 

m = 0,1, . . . 
a 

C A m n Q n  = 0 
n = O  

where A,,,,, = 0 whenever I m - n I > p (cf also Znojil 1986). 

we may derive the asymptotic form of the matrix A, 
In analogy with I, it is easy to evaluate the matrix elements in (2.6). In particular, 

A,,,,, = 4Npil(  2p )( 1 + O( N - ' ) )  
p + m - n  

N = m a x ( m ,  n ) > > l  
(2.7) 

and see immediately that the product (- l)"cp,, is almost constant for n >> 1 .  Moreover, 
we may expect that 

. . .) n 3 no >> 1 (2.8) (Pn = (-  1)"  e x p ( d , n ' 2 P - " / 2 P + J 2 n ( 2 P - 2 ) / 2 P +  

or 
2p-1 K 

d,+ . . .=  C d , p m + O ( p K + ' )  -11n[(-l)~(~,,]=- K 30, p = n-'/ 'p<< 1 
d 

dn 2P m=O 

where the FPPT expansion coefficients d,  or dm are to be determined from a compatibility 
of (2.9) with our difference Schrodinger equation (2.6) at the sufficiently large indices 
n 3 n o > > 1 .  

3. Jost solutions and effective Hamiltonians 

3.1. Boundary  conditions 

Whenever m a p ,  our infinite-dimensional equation (2.6) may be treated as a difference 
equation. In general, it possesses precisely 2p independent solutions 

(Pn  = (P',"' a = * l ,  * 2  , . . . ,  * p ,  n=0,1, . . .  (3 .1 )  
(Norlund 1923). The remaining 'redundant' p rows of (2.6) are equivalent to the 
boundary condition 

(3.2) 9-1 = cp-2 = . . , = (P-p = 0 
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‘in the origin’. On the contrary, the ‘regular’ solutions satisfying (3.2) are just some 
arbitrary values pol p I , .  . . , pP-, complemented by their continuation (ppr pp+, ,  . . . 
obtainable directly from the m = 0, 1,. . . , respective rows of (2.6). These regular 
solutions form a subclass of (3.1)-we shall denote them by the negative superscripts 
here 

(3.3) 

The regular solutions (3.3) of (2.6) will not be normalisable in general. On the 
other hand, the bound-state condition 

(3.4) 

will specify the physical and unique superposition (3.3). 
Obviously, the convergence of the norm (3.4) is necessary for the very existence 

of our fundamental expansion ( 2 . 5 ) .  It controls a large-n behaviour of qn (3.1). In 
analogy with I, it may also specify some p independent ‘Jost’ solutions given, e.g., by 
their asymptotic expansion ( 2 . 8 )  for n 2 no>> 1. We may denote them by a positive 
upper index and write 

Again, the respective m = no + p - 1, no + p - 2 ,  . . . rows of (2.6) specify the components 
Q ~ ~ - ~  , (P,,~-~, . . . in a recurrent manner. Obviously, this solution remains incompatible 
with the first p redundant rows of (2.6), i.e. with the boundary conditions (3.2). 

In a fully summetric way, we may start from both the regular and Jost initial values 
and treat (2.6) simply as recurrences with the 2p matching conditions 

(Jost) (Jost) 

n ,  p d n , < n , ,  i = 1 , 2  , . . . ,  2p. (3.6) Q(ph~sJ = ( J o W  = 
Q n ,  Q(,:eg’ 

Of course, such a choice is redundant. Whenever we choose a matching point n, such 
that 0 d n, < p, the corresponding item (3.6) becomes trivial and fixes merely one of 
the ‘regular’ coefficients g‘“’, U < 0. On the contrary, a choice of n, 2 no lowers the 
freedom in (3.5). Thus, with all n , i Z ( p ,  no),  we are left with p matching conditions 
(3.6) only. In particular, we may use p free Jost parameters g‘“), U > 0 and all n, < 0 
(Znojil et al 1985) or, alternatively, regular (T < O  and all n, 3 no (Znojil 1984a, Fernan- 
dez et a1 1986). 

3.2. Re-interpretation of the Feshbach method 

Linear equations of the type (2.6) are often treated as N + 00 limits of their finite 
N-dimensional subsystems. In the spirit of Feshbach (1958), we may analyse the 
N 00 limit also by means of the projection operator 

on the so-called model space with the fixed and finite dimension M <a. Indeed, with 
M < N < 00, a separation of (2 .6)  into its P-projected and complementary parts 

P A ( P +  Q ) c p  = O  Q = l - P  QA(Q+P)cp = O  
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eliminate formally, with det QAQ Z 0, 

6 = Pq 
1 Qq = -- QAQ QAPG 
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(3.8) 

and get the finite-dimensional equivalent 

Aeff$ = 0 (3.9) 

of (2.6) with the so-called effective Hamiltonian (Feshbach 1958) 

1 
Aeff = PAP - PAQ- QAP. 

QAQ 
(3.10) 

In the latter operator, the N + CO limiting transition may be replaced by the perturbation 
expansions (Kumar 1962), matrix continued-fractional analysis (Graffi and Grecchi 
1975), etc. 

In general, the (2p + 1)-diagonal matrix structure of A implies that A$,, =A,, for 
m or n smaller than M - p .  The N dependence of the solutions of (3.9) comes just 
from the p 2  matrix elements 

G,, = A$+ I - p  - 1, M +, - p  - t i , j = l , 2  , . . . ,  p. (3.11) 

This simplifies the discussion-in particular, we may put N = M and choose tentatively 
A‘‘= PAP (truncate A )  for the sufficiently large dimensions M. 

In the latter approximation, we may treat (3.9) as a matching of a regular solution 
to a trivial (zero-order) FPFT approximant (p!,,OSt) = 0 at p points n, = M, M + 1,. . . , M + 
p - 1. Here, we intend to search for the higher-order corrections in (3.1 l ) ,  keeping in 
mind that the truncation acquires a rigorous meaning in the M + CO limit only. 

Our main idea is simple. We assume that (2.8) represents a sufficiently reliable 
definition of the set of solutions (3.5) for the indices n 3 no >> 1. In this way, (2.6) 
holds for m 3 no+p and represents a recurrent definition of qn,-& for m = no+p - k 
and k = 1,2 , .  . . , no. The first p rows of it are not satisfied by the general Jost solution, 
so that the non-zero part of A(p(’OS‘) = A 

m +P 
A,nq~n’#O a > 0 ,  m = 0 , 1 ,  . . . ,  p - 1  (3.12) 

is a p-dimensional vector with respect to the lower index, or a matrix which specifies 
just the physical coefficients in the superposition (3.5), 

n = O  

(3.13) 

We see from (3.12) that the physical coefficients g ( r r ) ,  u>O, are functions of the 
first few matrix elements of A, so that any effective truncated form of the Schrodinger 
equation (3.9) must be satisfied asymptotically for an arbitrary Jost solution. When 
we recall the corresponding definitions, this statement leads to the set of p 2  relations 
(the last p rows of (3.9)) 

F Y + G X = O  (3.14) 

where each column corresponds to one Jost solution 
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Now, assuming that det X # 0, we may evaluate immediately the matrix G (3.1 1)-its 
FPPT expansion is simply a combination of (2.8) and (3.14) with n o s  M -2p, 

G = - F Y X - I .  (3.15) 

This is our main result-a knowledge of p independent Jost solutions enables us to 
write immediately all the missing maxtrix elements (3.1 1) in the eigenvalue condition 
(3.9). Hence, in the standard way, we may identify the binding energies with the roots 
of the transcendental equation 

det Ae‘ = 0 (3.16) 

which must be solved numerically of course (cf, e.g., Killingbeck 1985). 

4. Potentials with p = 2  

We have seen that in the PadC+Coulombic Schrodinger equation ( l . l ) ,  both the 
implicit energies and explicit wavefunctions may be written immediately in terms of 
the FPPT coefficients d,. Now let us illustrate their construction on the first few simplest 
potentials V (  r ) .  

We shall omit the p = 1 case. It has often been studied in the literature (e.g. Mitra 
1978) and its matrix Aeff may be constructed semi-numerically in terms of the analytic 
continued fractions (Znojil 1983a). It has already been described also within the 
present FPPT framework (Znojil 1984b). In the latter paper, the numerical efficiency 
of the eigenvalue conditions of the type (3.16) has also been thoroughly illustrated 
and tested. 

For the ‘first non-trivial’ equation (2.2) with p = 2 and E = -2a/ k, 

x2 bo+ b,x2/2k 
Ho+- c, > - 2 f i  ( k2 1 + c,x2/2k + c2x4/4k2 (4.1) 

we may recall the existence of the exceptional (exact and elementary) solutions for 
some particular couplings (Znojil 1983b). We introduce a slightly modified notation 
(2.3): 

( H 0 + ( 2 +  Go+ U)(X2+ ‘IX2 V )  ) x ( x )  = Ex(x) 

where 

(4.2) 

With a = 61 = cI = Go = E = 0, GI < 0 and purely imaginary U = - V, (4.2) degenerates 
to the methodical example of I .  In the present general case, we merely assume that 
U, V E  (--CO, 0) are complex, and arrive at our final Schrodinger equation (2.6) with 
the matrix 

(4.4) A = ( x2 + U )  ( Ho - E ) ( x2 + V )  + Go + GI X’ 

pentadiagonal in the standard harmonic oscillator basis (I). 
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At some large and fixed n, our equation (2.6) may be written in the form ’ ( A n n - >  ~ + A n n - ,  ( P n - 2  - Q n - 1  +. . .+Ann+,- )  ( P n + 2  = O  
n z  (Pn  (Pn 

(4.5) 

where the renormalised wavefunctions (P,,*~/(P,, may be replaced by their Taylor series 
expansions ( I ) .  Via the FPPT ansatz (2.9), this converts (4.5) into a power-series 
asymptotic requirement of the implicit form 

K 

O =  D,(L, GO, G I ,  U, V, E ) p m + O ( p K + ’ )  p = ~ / n ’ ’ ~ < <  1. (4.6) 
m = O  

This holds if and only if 

D m ( &  Go, GI U, V,  E )  = O  m = 0 , 1 ,  . . .  . (4.7) 
The latter relations form a coupled set of non-linear algebraic equations for the 

unknown coefficients d ,  , d 2 , ,  . , . In the leading-order approximation with K = 0, they 
are satisfied identically since the leading-order solution ( P ~  ( -  1)“ = 1 has already been 
incorporated into our ansatz (2.8). Further items of (4.7) with m = 1-3 reflect the 
degeneracy of the leading-order solution-the first non-trivial p = 2 result 

d ,  = O  (4.8) 
follows from the m = 4  row in (4.7). 

become trivial again. At m = 8, we get the requirement 
Equation (4.8) does not remove the degeneracy-the m = 5-7 conditions (4.7) 

( d S -  U ) ( d : -  V)=O. (4.9) 
For U # 0 and V # 0, it removes the degeneracy completely and we obtain 

d : ‘ ’ = n  di2’  = JV. (4.10) 
With the square root signs chosen such that Re d$Is2’ < 0, this coincides with a definition 
of a pair of the physical or Jost U >  0 d ,  = d‘,“’ coefficients and asymptotics (2.8). 

The m = 9 requirement (4.7) becomes 

d2d3( U + V -  2 d : )  = 0. (4.11) 
This is satisfied identically for U = K With a new independent assumption that U # V,  
it implies that 

d ,  = 0. (4.12) 
Equation (4.7) with m = 10 has a form which depends on our choice of d ,  (4.10). We 
obtain a pair of different values 

(4.13) d y )  = -2 d a )  = -1 

which reflects the U - V asymmetry of our original wavefunctions 

+ ( r )  - X ” ~ ( X ~ +  v)cp(x) x = (2kr )”* .  
By means of the computer symbolic manipulations in the language REDUCE, it is 

possible and easy to verify that 

d ,=O 

+4a( v+ a - 1) U -?U - 4( az- a) v-t VI 
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(4.14) 

+ 4a ( v - a + 1 )  U - $U + 4( a 2  - a ) v + $ VI 

d7 = 0 

etc. These results follow from the subsequent items m = 1 1 ,  12, 13, etc, of (4.7), 
respectively. The assumption U # V is important here. 

In  the particular example of I ,  we have obtained the results compatible with the 
present ones. In contrast, our computer manipulations verified a possibility of using 
the simplified ansatz here, with all dn=odd = 0. 

The solution (4.10) does not remove the degeneracy of asymptotics qn,  n >> 1 in 
the special case with U = V. Moreover, the m = 10 condition (4.7) does not imply the 
definition (4.13) but merely gives the zero coefficient (4.12). This is an  interesting 
difference from the old U # V case, underlined even more by the m = 1 1  triviality and 
by a delayed removal of qn degeneracy at m = 12 in (4.7), 

d:+ d,+k( Go/ U $ 3  - GI) = O .  (4.15) 

The physical Jost asymptotics and coefficients will now be given by the U = V pre- 
scription 

(4.16) 

In  principle, we must assume again that G o # ( l + G , ) U  or analyse the degeneracy 
d y )  = d y ’  in the third independent branch of the m > 12 solution. This will not be 
done here. 

5. Potentials with p = 3 

The p = 3 screened Coulombic potential 

a bo+ b , r +  b2r2 
r 

V ( r ) = - +  c3 > 0 
1 + c1 r + c2r2 + c3r3 

or its equivalent fractionally anharmonic force 

Go+ G , x 2  + G 2 x 4  c t ( x ) = x 2 +  
( x 2 +  U) (X2+  V ) ( X 2 +  W )  

(5 .1)  

(5.2) 

leads to the Schrodinger equation (2.6) with a heptadiagonal matrix A. For example, 
we may choose 

A = ( x 2 +  U ) ( x 2  + V ) ( H o -  EHx2  + W )  + Go+ G l x 2 +  G2x4 

A = ( x 2 +  U ) (  Ho- E ) ( x ’ +  V ) ( X ’  + W )  + Go+ G1x2+ G 2 x 4  

(5.3) 
or 

(5.4) 

as the two possible extensions of (4.4). 
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In both these cases, the FPPT technique and ansatz (2.9) with p = l/n"' lead to the 
non-linear algebraic set of equations of the implicit form 

Dm(L, Go, GI ,  Gz, U, V, W, E ) = O  m = 0,1, . . . (5.5) 

analogous to (4.7). 
Up to the m = 6 and m = 12 conditions giving 

d,  = O  d2 = 0 (5.6) 

the first 18 conditions (5.5) are identities. The first non-trivial m = 18 item 

( d i -  U ) ( d : -  V)(d:- W)=O (5.7) 

becomes an analogue of (4.9), and the m = 19 condition 

O=d,d4[-3d:+2d:(U+ V +  W ) - ( U V + U W +  VW)] (5.8) 

replaces (4.11) here. Again, it is necessary to distinguish between the separate special 
cases. 

With a complete absence of coincidences, U # V #  W, the square roots 

dill = di2' = 0 di3' = (5.9) 

with the negative real parts specify the non-degenerate physical K = 3 asymptotics 
cp',"' (2.8) of the Jost type. We also get 

d4 = 0 d5 = 0 (5.10) 

from (5.8) and from its m = 20 successor. 

of d:"'. For example, the choice of U = 1 leads to 
An exhaustive solution of the m = 21 equation (5.5) starts to depend on our choice 

for A from (5.3), and to the same value 

dk" =$(3d:')4-. . . ) - I  x (-7d\"'++. . .) 
= -2 

(5.11) 

(5.12) 

for A from (5.4), etc. 
The U = V =  W confluence modifies the above picture in a way similar to the 

preceding p = 2 case. Now, besides the trivially satisfied equations DI9 = 0, D20 = 0 
and also DZ2 = 0 and DZ3 = 0, we obtain 

d, = 0 (5.13) 

from D21 = 0. The m = 24 requirement ( 5 . 5 )  has an explicit cubic non-linear form 

( d : " ' ) 3 = ~ d 3 ( G 2 - G 1 / U + G o / U 2 )  a = l , 2 , 3  (5.14) 

which removes the degeneracy in general. 
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From the forthcoming m > 24 items of (5.5), we obtain 

or 
d --i 

6 -  4 

(5.15) 

(5.16) 

etc, from the matrix A in (5.3) or (5.4), respectively. 

6. Summary 

In its original formulation, the FPPT formalism has been based on a complicated 
solution of quadratic equations for ( p  x p)-dimensional matrices (Znojil 1984~).  This 
inspired its later conversion into a more numerically oriented method (cf, e.g., Znojil 
et a1 1985). In its present description, we have re-established it as an algebraic 
power-series expansion technique again. 

In  brief, our FPFT procedure starts from a certain asymptotic wavefunction ansatz, 
and its essence lies in an immediate algebraic reconstruction of the effective Hamil- 
tonians. Its core, namely a solution of a system of the coupled and non-linear algebraic 
equations, proved to have an almost elementary character. In fact, all the examples 
considered here as illustrations of the general technique lead to a trivial decoupling 
of these equations. In a recurrent way, we were able to determine the new higher-order 
perturbative contributions as functions of the old ones. 

The leading-order non-linear FPPT equations have a simple interpretation as condi- 
tions removing the asymptotic degeneracy of wavefunctions. In a few ‘confluent’ cases 
with some mutually interrelated couplings, this non-linearity and removal of degeneracy 
may move to the higher orders but, in general, we simply obtain the linear definitions 
of the higher-order corrections. This makes the FPPT structure and formulae very similar 
to the traditional, say, Rayleigh-Schrodinger ones. 

References 

Fernandez F M, Ogilvie J F and Tipping R H 1986 Preprint University of Alabama 
Feshbach H 1958 Ann.  Phys., NY 5 357 
Graffi S and Grecchi V 1975 Lett .  Nuovo Cimento 12 425 
Killingbeck J P 1985 Rep. Bog. Phys. 48 53 
Kumar K 1962 Perturbation Theory a n d  the Nuc lear  M a n y  Body Problem (Amsterdam: North-Holland) 
Mitra A K 1978 J. M a t h .  Phys 19 2018 
Norlund N E 1923 Vorlesungen ueber Diferenzenrechnung (Berlin: Springer) 
Znojil M 1983a Phys. Lett .  94A 120 
- 1983b J.  Phys. A :  M a t h .  G e n .  16 279 
__ 1984a 1. Phys. A :  M a t h .  G e n .  17 1603 
- 1984b J.  Phys. A :  M a t h .  Gen .  17 3449 
- 1984c 1. M a t h .  Phys. 25 2979 
- 1986 Phys. Lett .  114A 349 
- 1987 J .  Phys. A: M a t h .  Gen.  20 907 
Znojil M, Sandler K and Tater M 1985 J.  Phys. A: M a r h .  G e n .  18 2451 


